ALGORITMO DE BÚSQUEDA
Un algoritmo de búsqueda es aquel que está diseñado para localizar un elemento con ciertas propiedades dentro de una estructura de datos; por ejemplo, ubicar el registro correspondiente a cierta persona en una base de datos, o la mejor movida en una partida de ajedrez.
La variante más simple del problema es la búsqueda de un número en un vector.
Búsqueda secuencial
Se utiliza cuando el vector no está ordenado o no puede ser ordenado previamente. Consiste en buscar el elemento comparándolo secuencialmente (de ahí su nombre) con cada elemento del array hasta encontrarlo, o hasta que se llegue al final. La existencia se puede asegurar cuando el elemento es localizado, pero no podemos asegurar la no existencia hasta no haber analizado todos los elementos del array. A continuación se muestra el pseudocódigo del algoritmo:[cita requerida]
Datos de entrada:
vec: vector en el que se desea buscar el dato
tam: tamaño del vector. Los subíndices válidos van desde 0 hasta tam-1 inclusive.
dato: elemento que se quiere buscar.
Variables
pos: posición actual en el array
pos = 0
Mientras pos < tam:
Si vec[pos] == dato devolver verdadero y/o pos, de lo contrario:
pos = pos + 1
Fin (Mientras)
DEVOLVER FALSO,BÚSQUEDA DICOTÓMICA (BINARIA)
Se utiliza cuando el vector en el que queremos determinar la existencia de un elemento está previamente ordenado. Este algoritmo reduce el tiempo de búsqueda considerablemente, ya que disminuye exponencialmente el número de iteraciones necesarias.
Está altamente recomendado para buscar en arrays de gran tamaño. Por ejemplo, en uno conteniendo 50.000.000 elementos, realiza como máximo 26 comparaciones (en el peor de los casos).
Para implementar este algoritmo se compara el elemento a buscar con un elemento cualquiera del array (normalmente el elemento central): si el valor de éste es mayor que el del elemento buscado se repite el procedimiento en la parte del array que va desde el inicio de éste hasta el elemento tomado, en caso contrario se toma la parte del array que va desde el elemento tomado hasta el final. De esta manera obtenemos intervalos cada vez más pequeños, hasta que se obtenga un intervalo indivisible. Si el elemento no se encuentra dentro de este último entonces se deduce que el elemento buscado no se encuentra en todo el array.
A continuación se presenta el pseudocódigo del algoritmo, tomando como elemento inicial el elemento central del array.[cita requerida]
Datos de entrada:
vec: vector en el que se desea buscar el dato
tam: tamaño del vector. Los subíndices válidos van desde 0 hasta tam-1 inclusive.
dato: elemento que se quiere buscar.
Variables
centro: subíndice central del intervalo
inf: límite inferior del intervalo
sup: límite superior del intervalo
inf = 0
sup = tam-1
Mientras inf <= sup:
centro = ((sup - inf) / 2) + inf // División entera: se trunca la fracción
Si vec[centro] == dato devolver verdadero y/o pos, de lo contrario:
Si dato < vec[centro] entonces:
sup = centro - 1
En caso contrario:
inf = centro + 1
Fin (Mientras)
Devolver Falso
Implementación recursiva en C++[cita requerida]
#include <iostream>
#include <vector>
bool busqueda_dicotomica(vector<int> v, int principio, int fin, int x){
bool res;
if(principio < fin){
int m = (principio + fin)/2;
if(x < v[m]) res = busqueda_dicotomica(v, principio, m, x);
else if(x > v[m]) res = busqueda_dicotomica(v, m+1, fin, x);
else res = true;
}else res = false;
return res;
}
/*{Post: Si se encuentra devuelve true, sino false}*/
Algoritmo de ordenamiento
En computación y matemáticas un algoritmo de ordenamiento recursivo es un algoritmo que pone elementos de una lista o un vector en una secuencia dada por una relación de orden, es decir, el resultado de salida ha de ser una permutación —o reordenamiento— de la entrada que satisfaga la relación de orden dada. Las relaciones de orden más usadas son el orden numérico y el orden lexicográfico. Ordenamientos eficientes son importantes para optimizar el uso de otros algoritmos (como los de búsqueda y fusión) que requieren listas ordenadas para una ejecución rápida. También es útil para poner datos en forma canónica y para generar resultados legibles por humanos.
Desde los comienzos de la computación, el problema del ordenamiento ha atraído gran cantidad de investigación, tal vez debido a la complejidad de resolverlo eficientemente a pesar de su planteamiento simple y familiar. Por ejemplo, BubbleSort fue analizado desde 1956.1 Aunque muchos puedan considerarlo un problema resuelto, nuevos y útiles algoritmos de ordenamiento se siguen inventado hasta el día de hoy (por ejemplo, el ordenamiento de biblioteca se publicó por primera vez en el 2004). Los algoritmos de ordenamiento son comunes en las clases introductorias a la computación, donde la abundancia de algoritmos para el problema proporciona una gentil introducción a la variedad de conceptos núcleo de los algoritmos, como notación de O mayúscula, algoritmos divide y vencerás, estructuras de datos, análisis de los casos peor, mejor, y promedio, y límites inferiores.
Clasificación
Los algoritmos de ordenamiento se pueden clasificar de las siguientes maneras:
La más común es clasificar según el lugar donde se realice la ordenación
Algoritmos de ordenamiento interno: en la memoria del ordenador.
Algoritmos de ordenamiento externo: en un lugar externo como un disco duro.
Por el tiempo que tardan en realizar la ordenación, dadas entradas ya ordenadas o inversamente ordenadas:
Algoritmos de ordenación natural: Tarda lo mínimo posible cuando la entrada está ordenada.
Algoritmos de ordenación no natural: Tarda lo mínimo posible cuando la entrada está inversamente ordenada.
Por estabilidad: un ordenamiento estable mantiene el orden relativo que tenían originalmente los elementos con claves iguales. Por ejemplo, si una lista ordenada por fecha se reordena en orden alfabético con un algoritmo estable, todos los elementos cuya clave alfabética sea la misma quedarán en orden de fecha. Otro caso sería cuando no interesan las mayúsculas y minúsculas, pero se quiere que si una clave aBC estaba antes que AbC, en el resultado ambas claves aparezcan juntas y en el orden original: aBC, AbC. Cuando los elementos son indistinguibles (porque cada elemento se ordena por la clave completa) la estabilidad no interesa. Los algoritmos de ordenamiento que no son estables se pueden implementar para que sí lo sean. Una manera de hacer esto es modificar artificialmente la clave de ordenamiento de modo que la posición original en la lista participe del ordenamiento en caso de coincidencia.
Los algoritmos se distinguen por las siguientes características:
Complejidad computacional (peor caso, caso promedio y mejor caso) en términos de n, el tamaño de la lista o arreglo. Para esto se usa el concepto de orden de una función y se usa la notación O(n). El mejor comportamiento para ordenar (si no se aprovecha la estructura de las claves) es O(n log n). Los algoritmos más simples son cuadráticos, es decir O(n²). Los algoritmos que aprovechan la estructura de las claves de ordenamiento (p. ej. bucket sort) pueden ordenar en O(kn) donde k es el tamaño del espacio de claves. Como dicho tamaño es conocido a priori, se puede decir que estos algoritmos tienen un desempeño lineal, es decir O(n).
Uso de memoria y otros recursos computacionales. También se usa la notación O(n).
Estabilidad
Los algoritmos de ordenamiento estable mantienen un relativo preorden total. Esto significa que un algoritmo es estable solo cuando hay dos registros R y S con la misma clave y con R apareciendo antes que S en la lista original.
Cuando elementos iguales (indistinguibles entre sí), como números enteros, o más generalmente, cualquier tipo de dato en donde el elemento entero es la clave, la estabilidad no es un problema. De todas formas, se asume que los siguientes pares de números están por ser ordenados por su primer componente:
(4, 1) (3, 7) (3, 1) (5, 6)
En este caso, dos resultados diferentes son posibles, uno de los cuales mantiene un orden relativo de registros con claves iguales, y una en la que no:
(3, 7) (3, 1) (4, 1) (5, 6) (orden mantenido)
(3, 1) (3, 7) (4, 1) (5, 6) (orden cambiado)
Los algoritmos de ordenamiento inestable pueden cambiar el orden relativo de registros con claves iguales, pero los algoritmos estables nunca lo hacen. Los algoritmos inestables pueden ser implementados especialmente para ser estables. Una forma de hacerlo es extender artificialmente el cotejamiento de claves, para que las comparaciones entre dos objetos con claves iguales sean decididas usando el orden de las entradas original. Recordar este orden entre dos objetos con claves iguales es una solución poco práctica, ya que generalmente acarrea tener almacenamiento adicional.
Ordenar según una clave primaria, secundaria, terciara, etc., puede ser realizado utilizando cualquier método de ordenamiento, tomando todas las claves en consideración (en otras palabras, usando una sola clave compuesta). Si un método de ordenamiento es estable, es posible ordenar múltiples ítems, cada vez con una clave distinta. En este caso, las claves necesitan estar aplicadas en orden de aumentar la prioridad.
Ejemplo: ordenar pares de números, usando ambos valores
(4, 1) (3, 7) (3, 1) (4, 6) (original)
(4, 1) (3, 1) (4, 6) (3, 7) (después de ser ordenado por el segundo valor)
(3, 1) (3, 7) (4, 1) (4, 6) (después de ser ordenado por el primer valor)
Por otro lado:
(3, 7) (3, 1) (4, 1) (4, 6) (después de ser ordenado por el primer valor)
(3, 1) (4, 1) (4, 6) (3, 7) (después de ser ordenando por el segundo valor,
el orden por el primer valor es perturbado)
Lista de algoritmos de ordenamiento
Algunos algoritmos de ordenamiento agrupados según estabilidad tomando en cuenta la complejidad computacional.
Estables
Nombre traducido Nombre original Complejidad Memoria Método
Ordenamiento de burbuja Bubblesort O(n²) O(1) Intercambio
Ordenamiento de burbuja bidireccional Cocktail sort O(n²) O(1) Intercambio
Ordenamiento por inserción Insertion sort O(n²) O(1) Inserción
Ordenamiento por casilleros Bucket sort O(n) O(n) No comparativo
Ordenamiento por cuentas Counting sort O(n+k) O(n+k) No comparativo
Ordenamiento por mezcla Merge sort O(n log n) O(n) Mezcla
Ordenamiento con árbol binario Binary tree sort O(n log n) O(n) Inserción
Pigeonhole sort O(n+k) O(k)
Ordenamiento Radix Radix sort O(nk) O(n) No comparativo
Distribution sort O(n³) versión recursiva O(n²)
Gnome sort O(n²)
Inestables
Nombre traducido Nombre original Complejidad Memoria Método
Ordenamiento Shell Shell sort O(n1.25) O(1) Inserción
Comb sort O(n log n) O(1) Intercambio
Ordenamiento por selección Selection sort O(n²) O(1) Selección
Ordenamiento por montículos Heapsort O(n log n) O(1) Selección
Smoothsort O(n log n) O(1) Selección
Ordenamiento rápido Quicksort Promedio: O(n log n),
peor caso: O(n²) O(log n) Partición
Several Unique Sort Promedio: O(n u),
peor caso: O(n²);
u=n; u = número único de registros
Cuestionables, imprácticos
Nombre traducido Nombre original Complejidad Memoria Método
Bogosort O(n × n!), peor: no termina
Pancake sorting O(n), excepto en
máquinas de Von Neumann
Randomsort
No hay comentarios:
Publicar un comentario